它在構(gòu)造上的驚人設(shè)計(jì)、及多種測量數(shù)據(jù)的偶合,勝利結(jié)構(gòu)出了直角三角形:勾股定理能出正當(dāng)解釋。沒有一個(gè)數(shù)學(xué)定理像。古巴比倫人至少在公元前1600年就已通曉這個(gè)定理。勾股定理被發(fā)現(xiàn)當(dāng)前“幾何、數(shù)論、代數(shù)、解析幾何等畛域勾股定理都扮演了重要角色”那勾股定理到底有多重要呢。零、正數(shù)、虛數(shù)的發(fā)現(xiàn)都有其獨(dú)特的歷史印記”邊長為1的正方形的對角線長不能用整數(shù)或分?jǐn)?shù)示意。,勾股定理原理示用意 利美項(xiàng)目圈
copyright limeiseo
古埃及文化可能追溯至公元前6000年,但他們的足跡大局部在歷史中湮滅了,現(xiàn)存的諸多輝煌中,最讓咱們震撼的莫過于“世界八大奇跡之一”的金字塔。金字塔有著許多的未解之謎,它在構(gòu)造上的驚人設(shè)計(jì)、及多種測量數(shù)據(jù)的偶合,更為其削減了幾分奧秘色調(diào)。
利美網(wǎng)絡(luò)
咱們都知道,金字塔的底部多為正方形,而且角度誤差極小,信陽抖音,古埃及人在科技落后的情況下,是如何保證邊之間的垂直關(guān)系的呢?要知道金字塔的底長在200米左右,稍微的誤差都會讓金字塔“變形”。有一個(gè)正當(dāng)?shù)慕忉屖?,古埃及人早已掌握了“勾股定理”,并能將其使用于生存?
limeiseo(加v分享)
如上圖,預(yù)備一根長繩,然后在每個(gè)12等分點(diǎn)處打結(jié),并以3:4:5的關(guān)系拉緊成三角形,這樣長邊所對的角即為直角。是不是很奇妙,古埃及人應(yīng)用3:4:5的邊長關(guān)系,勝利結(jié)構(gòu)出了直角三角形。什么原理呢?勾股定理能出正當(dāng)解釋。 limeiseo(加v分享)
勾股定理:直角三角形的兩條直角邊的平方和等于斜邊的平方。反之,假設(shè)一個(gè)三角形,其中兩條邊的平方和等于另一邊的平方,那么,這個(gè)三角形是直角三角形。 利美項(xiàng)目圈
從古至今,沒有一個(gè)數(shù)學(xué)定理像“勾股定理”這樣遭到人們的順便關(guān)注和熱愛。 普林頓(Plinpton)322 泥板顯示,古巴比倫人至少在公元前1600年就已通曉這個(gè)定理。我國現(xiàn)代數(shù)學(xué)名著《周髀算經(jīng)》也明白有“勾廣三,股修四,經(jīng)隅五”的特例記錄,這也是‘勾股定理’一詞的起源。
利美網(wǎng)絡(luò)
在歐洲,古希臘數(shù)學(xué)家畢達(dá)哥拉斯最早發(fā)現(xiàn)了“勾股定理”,聽說為此該學(xué)派還殺了一百頭牛來慶賀,故在東方,“勾股定理”除了叫“畢達(dá)哥拉斯定理(Pythagoras theorem)”外,又名“百牛定理”。其余的現(xiàn)代文化,如古印度、古阿拉伯也都有勾股定理的記錄。 利美項(xiàng)目圈
勾股定理被發(fā)現(xiàn)當(dāng)前,證實(shí)方法就層出不窮——如歐幾里得證法、“趙爽弦圖”證法、總統(tǒng)證法等,據(jù)統(tǒng)計(jì),到如今已有500多種。對勾股定理的推行與運(yùn)用也取得了很大成效,幾何、數(shù)論、代數(shù)、解析幾何等畛域勾股定理都扮演了重要角色。不愧是“古今第肯定理”。
利美項(xiàng)目圈
勾股定理的“試驗(yàn)驗(yàn)證”
那勾股定理到底有多重要呢? 咱們無妨做一個(gè)假定:假設(shè)“勾股定理”至今都未被發(fā)現(xiàn),數(shù)學(xué)將會怎么呢?
本文利美網(wǎng)絡(luò)(m.nippyllc.com)整理發(fā)布
01 數(shù)系擴(kuò)大碰壁數(shù)系從易于感知的人造數(shù)末尾,通過始終的擴(kuò)大,到今天賦達(dá)到完備的形態(tài)。零、正數(shù)、虛數(shù)的發(fā)現(xiàn)都有其獨(dú)特的歷史印記,而在理數(shù)的發(fā)現(xiàn)尤為人們津津樂道。
limeiseo(加v分享)
公元前500年,畢達(dá)哥拉斯學(xué)派的希伯索斯(Hippasus)在鉆研“勾股定理”時(shí),有意間發(fā)現(xiàn)了一個(gè)驚人的理想:一個(gè)正方形的對角線與其一邊的長度是不可公度的——即,邊長為1的正方形的對角線長不能用整數(shù)或分?jǐn)?shù)示意。
這是對畢達(dá)哥拉斯學(xué)派所崇尚的“萬物皆數(shù)”理論的致命一擊,由此帶來的“第一次數(shù)學(xué)危機(jī)”更是許久未平。當(dāng)然,數(shù)學(xué)發(fā)展史上的每一次波折都是一場革命,隨著危機(jī)的處理,數(shù)學(xué)鉆研中新的血液也會隨之輸入。這一次,數(shù)系中退出了一位新成員——“在理數(shù)”。 利美項(xiàng)目圈
雖然√2不是被發(fā)現(xiàn)第一位在理數(shù)——由于關(guān)于圓周率π的發(fā)現(xiàn)興許更早,但今人在實(shí)踐運(yùn)用中只思考π的近似值,并沒有意識到它的“在感性”。是√2迫使人們?nèi)ニ妓鬟€存在著與“整數(shù)和分?jǐn)?shù)”不一樣的數(shù),進(jìn)而想辦法擴(kuò)大數(shù)系,處理矛盾。所以,√2的發(fā)現(xiàn)大大促使了數(shù)學(xué)家發(fā)現(xiàn)在理數(shù)的進(jìn)程,而√2的發(fā)現(xiàn)無疑是依賴“勾股定理”的。
難以設(shè)想,假設(shè)沒有“勾股定理”,咱們?nèi)缃竦摹睌?shù)系”會是怎么?會不會人們至今仍然不去思考圓周率π的在感性,更不會思索人造常數(shù)e與分?jǐn)?shù)有何不同?
√2是“勾股定理”在幾何與代數(shù)兩個(gè)畛域的融合產(chǎn)物。假設(shè)從數(shù)論上剖析,咱們又可能失去些什么論斷呢?
利美網(wǎng)絡(luò)
滿足勾股定理的三元數(shù)組(a,b,c)(其中a,b,c均為正整數(shù)),叫做勾股數(shù)。如(3,4,5)即為一組勾股數(shù)
經(jīng)過簡略的運(yùn)算可知,勾股數(shù)可能示意為如下的方式:(2mn·k,(m2-n2)·k,(m2+n2)·k)
limeiseo(加v分享)
*假設(shè)將定理中a2+b2=c2的平方改成立方,能否也有解呢?* 利美網(wǎng)絡(luò)
17世紀(jì)的著名數(shù)學(xué)家費(fèi)馬在瀏覽丟番圖《算術(shù)》時(shí),在第11卷第8命題旁寫道:
copyright limeiseo
丟番圖《算術(shù)》及費(fèi)馬注解
copyright limeiseo